Search results for "Coded excitation"

showing 2 items of 2 documents

Evaluation of Coded Excitations for Autonomous Airborne Ultrasonic Inspection

2019

Unmanned Aerial Vehicles (UAVs) are receiving increasing attention for use in Non-Destructive Testing due to their ability to access areas where manual inspection is not practical. Contact-based UAV ultrasonic inspections grant the opportunity to remotely monitor the structural health of an industrial asset with enhanced internal integrity information. Ultrasonic inspection is a Non-Destructive Testing (NDT) method conventionally used in corrosion mapping. Surface contacting ultrasonic transducers provide enhanced structural integrity information. However, due to near-surface aerodynamic effects, angular sensitivity of the ultrasound probe and alignment error during autonomous inspections, …

021103 operations researchbusiness.industryComputer scienceTKUAVAcousticsUltrasonic testing0211 other engineering and technologies02 engineering and technology01 natural sciencesSignalCorrosionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineTransducerUltrasound probeSignal-to-noise ratioUltrasonic InspectionNondestructive testing0103 physical sciencesUltrasonic sensorCoded Excitationbusiness010301 acoustics2019 IEEE International Ultrasonics Symposium (IUS)
researchProduct

Using coded excitation to maintain signal to noise for FMC+TFM on attenuating materials

2019

Ultrasonic Non-Destructive Evaluation using Full Matrix Capture (FMC) and Total Focusing Method (TFM) is used for high resolution imaging as every pixel is in optimal focus. FMC excites one element in turn, so operates with lower transmitted energy compared to phased array beamforming. The energy at a reflector is further reduced by the broad directivity pattern of the single element. The large number of Tx/Rx A-scans that contribute to each pixel recover the Signal-to-Noise Ratio (SNR) in the final TFM image. Maintaining this in the presence of attenuating materials is a challenge because relevant information in each A-scan signal is buried in the thermal noise, and the TFM process assumes…

BeamformingComputer sciencePhased arrayAcousticsTK02 engineering and technology01 natural sciencesSignalNoise (electronics)Signal-to-noise ratio0103 physical sciencesTFMUltrasound0202 electrical engineering electronic engineering information engineeringFMChigh attenuation010301 acousticsPixelbusiness.industryQuantization (signal processing)AttenuationUltrasoundorthogonal Golay code020206 networking & telecommunicationsCoded excitationRough surfaceUltrasonic sensorbusinessadditive manufacturingEnergy (signal processing)
researchProduct